Power Aware Protocol for Ad-Hoc Network

Divya Sharma¹ and Ashwani Kush²
¹ Dept. of IT, ITM University, Gurgaon
² Comp Sci Dept, University College, Kurukshetra University India,
divya84kk@gmail.com and akush20@gmail.com

ABSTRACT
A recent trend in ad hoc network routing is the reactive on-demand philosophy where routes are established only when required. Most of the protocols in this category, however, use single route and do not utilize multiple alternate paths. Major hurdle in communication via Ad hoc networks is their power limitations. As most of them use battery power and also are moving so there is always limitation of battery power. This Paper proposes a new scheme designed to increase network lifetime by minimizing power consumption. This will be incorporated on PAMAS as an extension to existing scheme.

KEYWORDS
Ad hoc networks, Routing protocols, Power, PAMAS

1. INTRODUCTION
Mobile Ad-hoc Network (MANET) is a collection of mobile nodes, which communicate with each other using wireless links in an infrastructure less network with no centralized administrative support. The end units in such networks are computers used to communicate among units on the move and need to reliably furnish this capability in the face of natural and man-made hostile environment [6,7,8]. Commercial scenarios for ad hoc wireless network include conferences/meetings, Emergency services, Law enforcement. For MANET is in emergency rescue operation and battle fields and the end units in such networks are highly mobile or stationary. Efficient battery management [17,18,19] transmission power management [20,21] manages the energy resources by controlling the early depletion of battery.

[22] Proposed Power aware routing (PAR-AODV) and Lifetime prediction Routing (LPR-AODV) to maximize network lifetime and minimize the power consumption from source to destination. In EA-AODV [23] cross layer interaction is used to detect link failures with the help of directional antennas. In AODV-EA [24] selection of node is based on the minimum energy state of each node as well as of whole network. Most work on Power efficient Protocol considered only static ad-hoc network. But in military application mobility is expected, so it is important that protocol should be power

and mobility aware [9]. Current challenges in Power Aware protocols are following:
- Multicast[13]
- QOS Support [16]
- Power -aware routing[10]
- Location-aided routing[14]

An effort has been made in this paper to provide some improvement for PAMAS [2] protocol. The algorithm will improve power saving feature of PAMAS [2]. Rest of the paper is organized as: In Section 2, a brief review of the two existing protocols has been done. Section 3 emphasizes the problem faced in the existing PAMAS [2] protocol. In section 4 modifications to PAMAS has been proposed. Conclusion is given in the last section.

2. RECENT WORK
Karn [1] Proposed Multiple Access with Collision Avoidance [MACA] for use in packet radio as an alteration to the traditional Carrier Sense Multiple Access [CSMA] media access scheme [1]. MACA is somewhat similar to the protocol proposed in [4] and also to that used in Wave LAN, and both resemble the basic APPLE Local Talk Link Access Protocol [5]. MACA is one improvement over CSMA/CA protocol with removal of hidden terminal problem [1]. To increase the performance in congestion, MACA improve version is made, that is Media Access Protocol for Wireless LANs (MACAW) [3]. It modified the back off algorithm [1] that is now the packet header which also contains the back off counter value and nodes which wants to transfer data checks back off counters and selects packet with minimal waiting time. It also adds new control packets: Acknowledgment (ACK), Data send (DS), RRTS (Request for request to send). This protocol performs better in congestion [3].

It saves 40-70% of battery power by turning off radios when they cannot transmit or cannot receive packets. When there is a transmission from node A to node B, Node C keeps itself off. In this way, Node C conserves its power [10]. Specific conditions under which nodes keep themselves off in

Proceedings of the 5th National Conference; INDIACom-2011
Computing For Nation Development, March 10 – 11, 2011
Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi
PAMAS[2] are: (a) A Node Power offs itself if it is not transferring any packet and if it is overhearing a transmission. (b) If at least one neighbor node is busy in transmitting and at least one neighbor is receiving. Because of fear of interference with the neighbor reception it keeps itself off and (c) If all the neighbors are transmitting and the node is not a receiver, the node then power itself off.

3. CRITIQUE OF MACA, MACAW, PAMAS

MACA [1] handles collisions through its exponential back off scheme. But it lacks acknowledgment mechanism. MACA improved version is MACAW [3] which perform better in congestion and can cope with highly non homogeneous congestion but it does not solve the problem of exposed terminal problem. The problem with PAMAS [2] is that when nodes power it-self off but it is not known for how long a node can remain in this state. A node can power itself off exactly when one of the above three condition satisfy. But a node has to estimate time that how long it remains powered off because when it is powered off, It cannot sense carrier so it has no way of knowing when a transmission has completed. Singh [2] suggests that in MAC layer protocol, nodes attempt to use the channel by sending and receiving RTS/CTS (Request to Send/Clear to Send) messages. Sender sends an RTS signal to the node with which it wants to transmit. If receiver receives uncorrupted RTS, then it replies with CTS message. Then the node after receiving CTS is ready for the transmission. This RTS/CTS message takes place on separate signal channel to remove ‘hidden terminal problem’. This RTS/CTS message contains the length of the packet the sender will send. Thus, a node will know the length of time for which it can power off. But the disadvantage of this protocol is that it uses a separate control channel. Nodes have to able to receive on the control channel while they are transmitting on the data channel and also transmit on data and control channels simultaneously.

There is another proposal in PAMAS[2] with its pros and cons, which says, to avoid the probing, a node should switch off the interface for data channel, but not for the control channel (which carries RTS/CTS packets). Advantage is that each sleeping node always knows how long to sleep by watching control channel. But its disadvantage is that this may not be useful when hardware is shared for the control and data channels-as it may not be possible to turn off much hardware due to the sharing. The main disadvantage of PAMAS [2] is that use of separate control channel is required. Nodes have to be able to receive on the control channel while they are transmitting on the data channel and also transmit on the data and control channel simultaneously. It can work only in the static environment. Some of PAMAS characteristics are:

- PAMAS can save energy by shutting down radios but it has no idea about the entire packet transmission path.
- If the counting protocol chooses a high power consuming route, the savings by PAMAS might be sacrificed by this routing ineffectiveness in energy, but in conclusion we need both.

4. PROPOSED PLAN

Basic idea behind proposed algorithm is to avoid packet loss by avoiding collisions while transferring data from source to destination and to increase power efficiency. As in PAMAS, there are separate channels for control and data transmission in proposed algorithm and they can individually turn on and off themselves and nodes have access to both of them. The use of control channel [2] allows mobile node to determine when and for how long to power off. Control signals are placed into slots in a control frame. It is assumed to be of same length as the data frame, which holds one packet and can send more than one control message at a time. Control Frame is split into following slots: RTS (Request to send), CTS (Clear to send), BUSY, ACK (acknowledgment).

To avoid Packet loss, the proposed scheme include Acknowledgment and low signal strength detection. If an ACK Packet is returned from the receiver to the sender immediately upon completion of data reception and the acknowledgment is not required by the sender, then the data packet is scheduled for retransmission then it transmits an RTS with same packet number again and the receiver responds with an ACK instead of CTS. Receiving node also monitors the signal strength due to which we can avoid packet loss. Following is the proposed algorithm to send a packet from source A to destination B. The assumption used is: SS < 1 means signal strength is very bad. And SS>1 means signal strength is very good.

1. Node B sends an ACK signal to A and also monitors signal strength (SS).
 - If SS< 1, for a specified amount of time, Then Node B goes to waiting state until it receives another packet in which case it returns to receive state or if a reasonable amount of time passes, in which case it moves into the idle state.
 - Else B will remove the portion of the message and return to idle state.

2. Node A does not receive an ACK signal; it will go to transmit wait state.

This Algorithm allows transmitting and receiving nodes pairs to delay transmission around periods of weak signal strength as well as allowing a data recovery mechanism also. Use of acknowledgment will allow transmitting and receiving node pairs to delay transmission around periods of weak signal strength,as well as allowing a data recovery mechanism.It will allow node to end their transmission early if they are moving from one another hence saving power and time

Suppose there are four nodes A,B,C,D as shown in figure 1.

Fig 1 : Transmission Medium
If Node C is busy with the transmission of data to Node D and at the same time Node B is sending an RTS to Node A, then we can power off B’s data interface to ensure that C’s transmission does not result in power consuming at Node B. This method has its own advantage is that each sleeping node always knows how long to sleep by watching the control channel. But the disadvantage is that this may not be useful when hardware is shared for the control and data channels because it may not be possible to turn off much hardware due to sharing[2].

Main characteristics of proposed scheme are:

- Power efficiency can be increased by turning power off the data interface of a node when its signalling interface is trying to acquire the channel.
- Collision can be avoided by detecting signal to noise ratio. If a node kept hearing the increased level of noise then that particular node can choose another node to transmit data.

5. BY USING PRIORITIES:

Priorities levels can be used for messages, by this we can avoid collision of data. In this, RTS signal and the data messages carry the priority of the message. COMP - Complete signal, this signal is send by the transmitter to the receiver when the data is complete.

Let’s suppose node A is Source and node B is Destination.

Algorithm:

1. If A is in idle state, it sends packet to the intended recipients.
2. If a node B receives an RTS with higher priority then B sends an CTS to A and at the same time it sends waiting signal to its own destination node.
3. Then node A sends CTS back to node B and sends waiting signal to its own transmitting node.
4. After completion of transmission of data, node B sends COMP signal to A.

6. CONCLUSION

Ad hoc network have some limitations in terms of energy factors. Table-1 provides an extensive survey of existing scheme. The stable route should have better battery power capacity, less transmission power consumption, stability of routes, and so on. The major goal is to use each node fairly and extend its lifetime. An extension to the existing scheme has been proposed and efforts are on for simulation results. This paper describe algorithm that try to minimize the collision of nodes. The proposed algorithm uses signal strength to detect loss of packets. Power efficiency can be increased by switching off the data interface while its signaling interface is busy to acquire the channel. It is hoped that the scheme will work much better in denser mediums than sparse as more number of nodes with better battery status will be available. The proposed work aims at developing a power and mobility aware protocol for ad hoc network. It is hoped that the results will support the theory proposed and will be better than existing scheme.

7. FUTURE SCOPE

Efforts are on to simulate the given proposed scheme on NS2. Effort has been made to simulate it using latest version of NS2.34. Results are to be compared with existing schemes. The scheme will be compared with existing ones and results will be echo the power saving. More work is to be carried out to implement the scheme on AODV or DSR to make it robust for stable routing as well.

REFERENCES

Table 1:

<table>
<thead>
<tr>
<th>Name</th>
<th>Hidden Terminal Problem</th>
<th>Algorithm Used</th>
<th>Acknowledgement</th>
<th>Transmission</th>
<th>Message exchange</th>
<th>Power Awareness</th>
<th>Performance in Non Homogeneous Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACA W</td>
<td>Removed</td>
<td>Back off Algorithm</td>
<td>No</td>
<td>Unicast</td>
<td>Unidirectional</td>
<td>No</td>
<td>Bad</td>
</tr>
<tr>
<td>MACA W</td>
<td>Removed</td>
<td>Modified Back Off Algorithm</td>
<td>Yes</td>
<td>Multicast</td>
<td>Bidirectional</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>PAMA S</td>
<td>Removed but only in some cases</td>
<td>Binary Exponential Algorithm</td>
<td>No</td>
<td>Multicast</td>
<td>Bidirectional</td>
<td>Yes</td>
<td>Good</td>
</tr>
</tbody>
</table>